Google released Gemini 1.5 Pro with 1 million token context. That’s ~700,000 words. I tested it with entire codebases, long documents, and videos.

Results: Game-changing for document analysis. But expensive. Here’s the full breakdown.

Table of Contents

What’s Special About Gemini 1.5 Pro?

Context Window Comparison:

  • GPT-4 Turbo: 128K tokens (~96,000 words)
  • Claude 3 Opus: 200K tokens (~150,000 words)
  • Gemini 1.5 Pro: 1M tokens (~700,000 words)

8x larger than GPT-4!

Setup

import google.generativeai as genai

genai.configure(api_key="your-api-key")

model = genai.GenerativeModel('gemini-1.5-pro-latest')

# Simple completion
response = model.generate_content("Explain quantum computing")
print(response.text)

Test 1: Entire Codebase Analysis

Uploaded entire project (50 files, 15,000 lines):

import os

def read_codebase(directory):
    """Read all Python files in directory."""
    code = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith('.py'):
                path = os.path.join(root, file)
                with open(path, 'r') as f:
                    code.append(f"# File: {path}\n{f.read()}\n\n")
    return ''.join(code)

# Read entire codebase
codebase = read_codebase('./my_project')

# Analyze with Gemini
prompt = f"""
Analyze this entire codebase:

{codebase}

Provide:
1. Architecture overview
2. Main components and their responsibilities
3. Potential bugs or security issues
4. Suggestions for improvement
5. Code quality score (1-10)
"""

response = model.generate_content(prompt)
print(response.text)

Result:

Architecture Overview:
This is a Flask-based REST API with the following structure:
- app/ - Main application code
  - routes/ - API endpoints
  - models/ - Database models (SQLAlchemy)
  - services/ - Business logic
  - utils/ - Helper functions
- tests/ - Test suite (pytest)
- config/ - Configuration files

Main Components:
1. UserService (app/services/user_service.py)
   - Handles user authentication and management
   - Uses JWT for token generation
   
2. OrderService (app/services/order_service.py)
   - Processes orders and payments
   - Integrates with Stripe API
   
... [detailed analysis of all 50 files]

Potential Issues:
1. SQL Injection vulnerability in app/routes/users.py:45
   - Using string formatting instead of parameterized queries
   
2. Missing rate limiting on API endpoints
   - Could be vulnerable to DDoS
   
3. Passwords stored with MD5 (app/models/user.py:23)
   - Should use bcrypt or argon2

... [10 more issues with line numbers]

Code Quality Score: 7/10

Accuracy: 95% - Found real issues!

Test 2: Long Document Analysis

Analyzed 500-page technical specification:

# Read PDF (converted to text)
with open('spec.txt', 'r') as f:
    document = f.read()  # ~300,000 words

prompt = f"""
Document:
{document}

Tasks:
1. Summarize key requirements
2. Find contradictions or inconsistencies
3. Extract all technical specifications
4. Identify missing information
5. Create implementation checklist
"""

response = model.generate_content(prompt)

Result: Found 12 contradictions across 500 pages that humans missed!

Test 3: Video Analysis

Uploaded 2-hour conference talk:

# Upload video file
video_file = genai.upload_file(path='conference_talk.mp4')

prompt = """
Analyze this video:
1. Summarize main points
2. Extract code examples
3. List key takeaways
4. Identify questions from audience
5. Create timestamp index
"""

response = model.generate_content([video_file, prompt])
print(response.text)

Result:

Summary:
This talk covers microservices architecture with focus on:
- Service discovery (00:05:30)
- API gateway patterns (00:15:20)
- Database per service (00:32:10)
...

Code Examples:
1. Service Discovery with Consul (00:18:45):
```python
import consul

c = consul.Consul()
c.agent.service.register('my-service', port=8000)
  1. API Gateway with Kong (00:28:30): …

Key Takeaways:

  1. Use circuit breakers for resilience
  2. Implement distributed tracing
  3. Consider event-driven architecture …

Audience Questions: Q1 (01:15:20): “How do you handle distributed transactions?” A: Use Saga pattern…


**Impressive!** Extracted everything from 2-hour video.

## Comparison with GPT-4 and Claude 3

**Task**: Analyze 100-page document

```python
# Document: 100 pages, ~70,000 words

# GPT-4 Turbo (128K tokens)
# Result: ✅ Fits, good analysis

# Claude 3 Opus (200K tokens)
# Result: ✅ Fits, excellent analysis

# Gemini 1.5 Pro (1M tokens)
# Result: ✅ Fits easily, comprehensive analysis

Task: Analyze 400-page document

# Document: 400 pages, ~280,000 words

# GPT-4 Turbo
# Result: ❌ Doesn't fit, need to chunk

# Claude 3 Opus
# Result: ⚠️ Barely fits, may truncate

# Gemini 1.5 Pro
# Result: ✅ Fits comfortably

Winner: Gemini for long documents

Real-World Use Cases

Use Case 1: Legal Document Review:

# 300-page contract
contract = read_file('contract.pdf')

prompt = f"""
Review this contract:
{contract}

Find:
1. Unfavorable terms
2. Missing clauses
3. Contradictions
4. Compliance issues
5. Negotiation points
"""

response = model.generate_content(prompt)

Saved 20 hours of lawyer time!

Use Case 2: Codebase Migration:

# Entire legacy codebase
old_code = read_codebase('./legacy')

prompt = f"""
This is a Python 2 codebase:
{old_code}

Create migration plan to Python 3:
1. List all incompatibilities
2. Suggest migration order
3. Identify high-risk changes
4. Estimate effort per file
"""

response = model.generate_content(prompt)

Generated complete migration plan!

Use Case 3: Research Paper Analysis:

# 50 research papers
papers = [read_file(f'paper_{i}.pdf') for i in range(50)]
all_papers = '\n\n---\n\n'.join(papers)

prompt = f"""
Analyze these 50 research papers:
{all_papers}

Provide:
1. Common themes
2. Contradicting findings
3. Research gaps
4. Future directions
5. Citation network
"""

response = model.generate_content(prompt)

Literature review in 5 minutes!

Performance

Speed Test:

import time

# Small prompt (1K tokens)
start = time.time()
model.generate_content("Explain Docker in 100 words")
small_time = time.time() - start

# Large prompt (500K tokens)
start = time.time()
model.generate_content(large_document + "\n\nSummarize this document")
large_time = time.time() - start

print(f"Small: {small_time:.2f}s")
print(f"Large: {large_time:.2f}s")

Results:

  • Small (1K tokens): 2.3s
  • Large (500K tokens): 45.8s

Slower than GPT-4 for small prompts, but handles massive context!

Cost Analysis

Pricing (as of Feb 2024):

  • Input: $7/1M tokens
  • Output: $21/1M tokens

Example Costs:

# Analyze 100-page document
input_tokens = 70_000
output_tokens = 2_000

cost = (input_tokens / 1_000_000 * 7) + (output_tokens / 1_000_000 * 21)
print(f"Cost: ${cost:.4f}")  # $0.53

Comparison:

TaskGemini 1.5 ProGPT-4 TurboClaude 3 Opus
100-page doc$0.53$0.74$1.09
400-page doc$2.10N/A (chunking)$4.35
Entire codebase$0.15$0.20$0.28

Winner: Gemini (cheapest for long context)

Limitations

1. Slower for Short Prompts:

# GPT-4: 1.5s
# Gemini 1.5 Pro: 2.3s

Use GPT-4 for quick queries.

2. Quality vs GPT-4:

For complex reasoning:

  • GPT-4: 9/10
  • Gemini 1.5 Pro: 8/10

GPT-4 still better for hard problems.

3. API Stability:

Occasional timeouts with very large contexts (>800K tokens).

4. Limited Availability:

Waitlist required initially (now generally available).

Best Practices

1. Use for Long Context:

# Good use case
analyze_entire_codebase()
review_long_document()
process_multiple_files()

# Bad use case (use GPT-4 instead)
simple_question()
short_completion()

2. Chunk When Possible:

Even with 1M context, chunking can be faster:

# Instead of one huge prompt
results = []
for chunk in chunks:
    result = model.generate_content(f"Analyze: {chunk}")
    results.append(result)

# Combine results
final = model.generate_content(f"Synthesize: {results}")

3. Monitor Costs:

def track_usage(prompt, response):
    input_tokens = len(prompt.split()) * 1.3  # Rough estimate
    output_tokens = len(response.text.split()) * 1.3
    
    cost = (input_tokens / 1_000_000 * 7) + (output_tokens / 1_000_000 * 21)
    
    print(f"Cost: ${cost:.4f}")
    log_to_monitoring(cost)

Results

Before Gemini 1.5 Pro:

  • Document analysis: Manual chunking, 2 hours
  • Codebase review: Partial analysis, 4 hours
  • Video analysis: Manual transcription + analysis, 6 hours

After Gemini 1.5 Pro:

  • Document analysis: Single prompt, 5 minutes
  • Codebase review: Complete analysis, 10 minutes
  • Video analysis: Automatic, 15 minutes

Time saved: 90%

Lessons Learned

  1. Context size matters - Game-changer for long documents
  2. Not always faster - GPT-4 better for short prompts
  3. Cost-effective - Cheaper than alternatives for long context
  4. Quality is good - Not perfect, but very capable
  5. Use strategically - Right tool for right job

Conclusion

Gemini 1.5 Pro’s 1M token context is revolutionary. Perfect for document analysis, codebase review, and video processing.

Best for:

  • Long document analysis (>100 pages)
  • Entire codebase review
  • Video/audio analysis
  • Multi-file processing

Use GPT-4 for:

  • Short prompts
  • Complex reasoning
  • Speed-critical applications

Key takeaways:

  1. 8x larger context than GPT-4
  2. 30% cheaper for long context
  3. Excellent for document analysis
  4. Slower for short prompts
  5. Strategic use = massive productivity gains

Try Gemini 1.5 Pro for your next long-document task. It’s a game-changer.