Claude 3 Opus vs GPT-4: Comprehensive Comparison for Production Use
Anthropic released Claude 3 with three models: Haiku, Sonnet, and Opus. They claim Opus beats GPT-4. I spent 30 days testing both in production.
Results: Claude 3 Opus wins on reasoning and code quality. GPT-4 wins on speed and cost. Here’s the detailed breakdown.
Table of Contents
Model Overview
Claude 3 Opus:
- Context: 200K tokens
- Cost: $15/1M input, $75/1M output
- Strengths: Reasoning, code, analysis
- Released: March 2024
GPT-4 Turbo:
- Context: 128K tokens
- Cost: $10/1M input, $30/1M output
- Strengths: Speed, versatility
- Released: November 2023
Setup
import anthropic
from openai import OpenAI
# Claude 3
claude_client = anthropic.Anthropic(api_key="your-claude-key")
def claude_completion(prompt, model="claude-3-opus-20240229"):
message = claude_client.messages.create(
model=model,
max_tokens=4096,
messages=[
{"role": "user", "content": prompt}
]
)
return message.content[0].text
# GPT-4
openai_client = OpenAI(api_key="your-openai-key")
def gpt4_completion(prompt, model="gpt-4-turbo"):
response = openai_client.chat.completions.create(
model=model,
messages=[
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
Code Generation Test
Task: Generate a REST API with authentication
prompt = """
Create a Python Flask REST API with:
1. User registration and login
2. JWT authentication
3. Protected endpoints
4. Input validation
5. Error handling
6. SQLAlchemy models
Include complete, production-ready code.
"""
claude_code = claude_completion(prompt)
gpt4_code = gpt4_completion(prompt)
Results:
| Metric | Claude 3 Opus | GPT-4 Turbo | Winner |
|---|---|---|---|
| Code quality | 9/10 | 8/10 | Claude |
| Completeness | 10/10 | 9/10 | Claude |
| Best practices | 10/10 | 8/10 | Claude |
| Documentation | 9/10 | 7/10 | Claude |
| Time to generate | 45s | 28s | GPT-4 |
Claude generated more complete code with better error handling and security practices.
Reasoning Test
Complex logic problem:
prompt = """
You have 3 boxes. One contains only apples, one contains only oranges,
and one contains both. All boxes are labeled incorrectly. You can pick
one fruit from one box. How do you correctly label all boxes?
Explain your reasoning step by step.
"""
claude_answer = claude_completion(prompt)
gpt4_answer = gpt4_completion(prompt)
Claude 3 Opus:
- Correct answer: Yes
- Reasoning clarity: Excellent
- Step-by-step breakdown: Very detailed
- Explanation quality: 10/10
GPT-4 Turbo:
- Correct answer: Yes
- Reasoning clarity: Good
- Step-by-step breakdown: Adequate
- Explanation quality: 8/10
Claude provided more thorough reasoning with better explanations.
Long Context Handling
Test with 150K token document:
# Load large document
with open('large_document.txt', 'r') as f:
document = f.read() # ~150K tokens
prompt = f"""
Document:
{document}
Questions:
1. Summarize the main arguments
2. Find contradictions
3. Extract key statistics
4. Identify missing information
"""
# Claude 3 Opus (200K context)
claude_analysis = claude_completion(prompt, model="claude-3-opus-20240229")
# GPT-4 Turbo (128K context - need to truncate)
truncated_doc = document[:100000] # Approximate token limit
gpt4_analysis = gpt4_completion(f"Document:\n{truncated_doc}\n\n{prompt}")
Results:
- Claude: Analyzed full document, found all contradictions
- GPT-4: Missed information in truncated portion
Winner: Claude (larger context window)
Cost Comparison
Real production workload (1 month):
# Calculate costs
def calculate_cost(input_tokens, output_tokens, model):
if model == "claude-3-opus":
return (input_tokens / 1_000_000 * 15) + (output_tokens / 1_000_000 * 75)
elif model == "gpt-4-turbo":
return (input_tokens / 1_000_000 * 10) + (output_tokens / 1_000_000 * 30)
# Our usage (monthly)
input_tokens = 50_000_000 # 50M
output_tokens = 10_000_000 # 10M
claude_cost = calculate_cost(input_tokens, output_tokens, "claude-3-opus")
gpt4_cost = calculate_cost(input_tokens, output_tokens, "gpt-4-turbo")
print(f"Claude 3 Opus: ${claude_cost:,.2f}")
print(f"GPT-4 Turbo: ${gpt4_cost:,.2f}")
Results:
- Claude 3 Opus: $1,500/month
- GPT-4 Turbo: $800/month
Winner: GPT-4 (47% cheaper)
Speed Comparison
Benchmark: 1000-word article generation
import time
def benchmark_speed(model_func, prompt, iterations=20):
times = []
for _ in range(iterations):
start = time.time()
model_func(prompt)
times.append(time.time() - start)
return sum(times) / len(times)
prompt = "Write a 1000-word article about climate change solutions."
claude_time = benchmark_speed(
lambda p: claude_completion(p, "claude-3-opus-20240229"),
prompt
)
gpt4_time = benchmark_speed(
lambda p: gpt4_completion(p, "gpt-4-turbo"),
prompt
)
print(f"Claude 3 Opus: {claude_time:.2f}s")
print(f"GPT-4 Turbo: {gpt4_time:.2f}s")
Results:
- Claude 3 Opus: 42.3s
- GPT-4 Turbo: 28.7s
Winner: GPT-4 (32% faster)
Real-World Use Cases
1. Code Review:
def review_code_with_both(code):
prompt = f"""
Review this code for:
1. Security vulnerabilities
2. Performance issues
3. Best practices violations
4. Potential bugs
Code:
```python
{code}
```
"""
claude_review = claude_completion(prompt)
gpt4_review = gpt4_completion(prompt)
return {
"claude": claude_review,
"gpt4": gpt4_review
}
# Test
code = """
def process_payment(amount, card_number):
# Process payment
db.execute(f"INSERT INTO payments VALUES ({amount}, '{card_number}')")
return True
"""
reviews = review_code_with_both(code)
Claude found:
- SQL injection vulnerability
- Missing input validation
- No error handling
- Storing card numbers (PCI compliance issue)
- Missing transaction management
GPT-4 found:
- SQL injection vulnerability
- Missing error handling
- No input validation
Winner: Claude (more thorough)
2. Technical Documentation:
def generate_docs(code):
prompt = f"""
Generate comprehensive API documentation for this code:
{code}
Include:
- Function descriptions
- Parameters
- Return values
- Examples
- Error cases
"""
return {
"claude": claude_completion(prompt),
"gpt4": gpt4_completion(prompt)
}
Results:
- Claude: More detailed, better examples
- GPT-4: Faster, good enough for most cases
Claude 3 Sonnet Alternative
For cost-sensitive workloads:
def claude_sonnet_completion(prompt):
message = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=4096,
messages=[{"role": "user", "content": prompt}]
)
return message.content[0].text
# Cost: $3/1M input, $15/1M output (5x cheaper than Opus)
Claude 3 Sonnet vs GPT-4 Turbo:
- Speed: Similar
- Cost: Sonnet 60% cheaper
- Quality: Sonnet slightly better
- Context: Sonnet 200K vs GPT-4 128K
Production Recommendations
Use Claude 3 Opus for:
- Complex reasoning tasks
- Code generation and review
- Long document analysis (>128K tokens)
- High-stakes decisions
- When quality > cost
Use GPT-4 Turbo for:
- High-volume workloads
- Real-time applications
- Cost-sensitive projects
- General-purpose tasks
- When speed > quality
Use Claude 3 Sonnet for:
- Best balance of cost/quality
- Most production workloads
- Long context needs
- Better than GPT-4 Turbo at lower cost
Hybrid Approach
Use both strategically:
def smart_completion(prompt, task_type):
if task_type == "code_review":
return claude_completion(prompt, "claude-3-opus-20240229")
elif task_type == "chat":
return gpt4_completion(prompt, "gpt-4-turbo")
elif task_type == "analysis":
return claude_completion(prompt, "claude-3-sonnet-20240229")
else:
return gpt4_completion(prompt, "gpt-4-turbo")
# Route based on task
code_review = smart_completion(code, "code_review") # Uses Claude Opus
chat_response = smart_completion(message, "chat") # Uses GPT-4
Results Summary
| Category | Claude 3 Opus | GPT-4 Turbo | Winner |
|---|---|---|---|
| Code Quality | 9/10 | 8/10 | Claude |
| Reasoning | 10/10 | 8/10 | Claude |
| Speed | 7/10 | 9/10 | GPT-4 |
| Cost | 6/10 | 8/10 | GPT-4 |
| Context Window | 200K | 128K | Claude |
| Documentation | 9/10 | 7/10 | Claude |
| Versatility | 8/10 | 9/10 | GPT-4 |
Overall: Depends on use case
Our Production Setup
class AIRouter:
def __init__(self):
self.claude = anthropic.Anthropic(api_key=CLAUDE_KEY)
self.openai = OpenAI(api_key=OPENAI_KEY)
def complete(self, prompt, priority="balanced"):
if priority == "quality":
# Use Claude 3 Opus for best quality
return self.claude_opus(prompt)
elif priority == "speed":
# Use GPT-4 Turbo for speed
return self.gpt4_turbo(prompt)
else:
# Use Claude 3 Sonnet for balance
return self.claude_sonnet(prompt)
def claude_opus(self, prompt):
msg = self.claude.messages.create(
model="claude-3-opus-20240229",
max_tokens=4096,
messages=[{"role": "user", "content": prompt}]
)
return msg.content[0].text
def claude_sonnet(self, prompt):
msg = self.claude.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=4096,
messages=[{"role": "user", "content": prompt}]
)
return msg.content[0].text
def gpt4_turbo(self, prompt):
response = self.openai.chat.completions.create(
model="gpt-4-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
# Usage
router = AIRouter()
# High-quality code review
review = router.complete(code_prompt, priority="quality")
# Fast customer support
response = router.complete(support_query, priority="speed")
# Balanced general use
result = router.complete(general_prompt, priority="balanced")
Lessons Learned
- No clear winner - Depends on use case
- Claude excels at reasoning - Better for complex tasks
- GPT-4 wins on speed/cost - Better for high volume
- Claude 3 Sonnet is sweet spot - Best balance
- Use hybrid approach - Route intelligently
Conclusion
Both models are excellent. Choose based on your priorities:
- Quality-first: Claude 3 Opus
- Cost-first: GPT-4 Turbo
- Balanced: Claude 3 Sonnet
Key takeaways:
- Claude 3 Opus: Best reasoning and code quality
- GPT-4 Turbo: Faster and cheaper
- Claude 3 Sonnet: Best overall value
- Use hybrid routing for optimal results
- Test both with your specific workload
Don’t pick one. Use both strategically.